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In this pape r  we invest igate  the shock c o m p r e s s i o n  and also the unloading of shock- loaded 
me ta l s ,  taking into account  the a i r  in the po re  spaces  between the g ra ins  of continuous 
metal .  We study the range  of p r e s s u r e s  and t e m p e r a t u r e s  of the a i r  during the shock c o m -  
p re s s ion ,  where in  the contr ibution of the t h e r m a l  radia t ion of the a i r  to the p r e s s u r e  and 
energy  is s t i l l  unimportant .  The expe r imen ta l  r e su l t s ,  obtained in the p r e s s u r e  range  40-  
850 kbar  for  Ni, Cu, and W, ag ree  within expe r imen ta l  e r r o r  with calculated data.  We give 
the expe r imen ta l  r e s u l t s  for  the unloading of porous  copper  f r o m  a p r e s s u r e  s tate  of 485 
kbar .  

Porous  meta l s ,  which com pr i s e  a collect ion of meta l l ic  gra ins  with a i r  bubbles in the spaces  between 
them,  under shock c o m p r e s s i o n  can be c h a r a c t e r i z e d  by mean values  of the mass  and wave veloci t ies ,  and 
a lso  by a mean value of the p r e s s u r e ,  which is ave raged  out between the a i r  and the g ra ins  of continuous 
meta l .  The m a t e r i a l  inside the g ra ins  is c o m p r e s s e d  and heated to the t e m p e r a t u r e  and densi ty for  the 
continuous meta l  at  this  p r e s s u r e .  Under r epea ted  c o m p r e s s i o n  of the a i r  we a s s u m e  that  the f i r s t  two 
waves  a r e  s t rong,  each of them yielding a c o m p r e s s i o n  close to its l imit ing value.  A fur ther  compres s ion  
of the a i r  by subsequent  weak waves  is not taken into account.  We consider  s ta tes  where in  the contr ibution 
of t h e r m a l  radia t ion of the a i r  is s t i l l  insignificant .  The speci f ic  volume of the powder is equal to the sum 
of the specif ic  vo lumes  of the a i r  and of the continuous metal ,  each multipl ied by its weight f ract ion.  P a r -  
a m e t e r s  of the shock adiabat  ( p r e s su re ,  m a s s  veloci ty ,  compress ion)  for  the porous  meta ls  Ni, Cu, and W, 
calculated in this way, agree  with the expe r imen ta l  r e su l t s  in the range  of 40-850 kbar .  

Expe r imen ta l  data for  the unloading of porous  copper  conf i rms  the fact  that  the unloading p r o c e s s  is 
defined by an i sen t ropic  expansion of the c o m p r e s s e d  g ra ins  of the continuous metal .  In the p r e s s u r e  range  
f rom 485 kbar  to ~ 100 kbar ,  the volume of the a i r  s tays  constant,  being equal to the volume for  the s tate  
f rom which the unloading commenced .  This can apparent ly  be explained by the fact  that  the p r o c e s s  involving 
expansion of the a i r  under these  conditions is not an i sen t ropic  one owing to the influence of the cooling 
(and, cor respondingly ,  of the compress ion)  of the a i r  due to heat  t r a n s f e r .  

To obtain approx ima te  cu rves  for  the shock adiabats  of porous  m a t e r i a l s  the authors  of [1] p roposed  
to take into account  the finite c o m p r e s s i o n  of the a i r  filling the voids between the g ra ins  of the continuous 
ma te r i a l .  Here  i t  may  be a s sumed  that  for  the shock wave t rans i t ion  t ime  (~ 1 t~sec) between the g ra ins  
and the a i r  only the p r e s s u r e  is ave raged  out, t h e r m a l  equi l ibr ium not being es tabl ished.  

It may be a s s um ed  that  if the Four i e r  number  F = a T / R  2 << 1, then the p r o c e s s  of averaging  out the 
t e m p e r a t u r e s  has not yet  commenced .  Here  a is the t h e r m a l  diffusivity of the gra in  ma te r i a l ,  R is a c h a r -  
a c t e r i s t i c  length, and T is a cha r ac t e r i s t i c  t ime  of the p r o c e s s ,  the duration of the shock wave.  

Thus,  for  example ,  for  copper  with a c h a r a c t e r i s t i c  gra in  dimension in the tens of mic rons ,  the Fo u r i e r  
number  is on the o rde r  of one-tenth;  i .e. ,  we can a s sume ,  apparent ly ,  that  in this case  the p r o c e s s  of t e m -  
p e r a t u r e  averaging  has not yet  begun. Moreover ,  the specif ic  volume of the powder is  equal to the sum of 
the specif ic  vo lumes  of the a i r  and of the continuous ma te r i a l ,  each multipl ied by its weight f ract ion.  We 
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c o n s i d e r  a i r  s t a t e s  for  which  the  c o n t r i b u t i o n  to the  e n e r g y  and p r e s s u r e  of the  t h e r m a l  r a d i a t i o n  i s  n e -  
g l i g i b l e ,  t h i s  c o n t r i b u t i o n  be ing  s i g n i f i c a n t  fo r  t e m p e r a t u r e s  above  a m i l l i o n  d e g r e e s  [2]. 

The  a u t h o r s  of  [1] took  into accoun t  c o m p r e s s i o n  of the  a i r  by  a s i ng l e  shock  wave .  A much  c l o s e r  
a g r e e m e n t  w i th  e x p e r i m e n t  m a y  be  ob t a ined  if  du r ing  r e p e a t e d  c o m p r e s s i o n  of the  a i r  bubb l e s  (which o c c u r s  
in  a c t u a l i t y ) ,  the  two f i r s t  w a v e s  a r e  a s s u m e d  to be s t r o n g ,  e a c h  of t h e s e  w a v e s  c o m p r e s s i n g  the a i r  c l o s e  
to  i t s  l i m i t i n g  v a l u e ,  and  if  the  a d d i t i o n a l  c o m p r e s s i o n  by the  "weak"  w a v e s  t ha t  fo l low i s  n e g l i g i b l e .  

By a n a l o g y  wi th  [1] we  ob ta in  e x p r e s s i o n s :  fo r  the  s p e c i f i c  v o l u m e  V* of the  p o w d e r :  

fo r  the  c o m p r e s s i o n :  

v * = v + ( k -  t ) ( T - ~ )  v. (1) 

t 1 t"/7 - -  1"~ 
~* - ~ + (~ - ~ t,~-T-i-~] (2) 

f o r  the  m a s s  v e l o c i t y :  

r _~ | , I ,  
<<, = [~+(~ t ~ ( ~ _ t ) p v ~  I (3) 

H e r e  V is  the  s p e c i f i c  v o l u m e , k  i s  the  coe f f i c i en t  of  p o r o s i t y ,  o i s  t he  c o m p r e s s i o n ,  t a k e n  wi th  r e l a -  
t i on  to the  i n i t i a l  s p e c i f i c  v o l u m e  V 0 of  t he  con t inuous  m a t e r i a l ,  u i s  the  m a s s  v e l o c i t y ,  p i s  t he  p r e s s u r e ,  
and  7 i s  the  exponen t  of a d i a b a t i c i t y  fo r  a i r .  

Q u a n t i t i e s  b e a r i n g  the  a s t e r i s k  c h a r a c t e r i z e  the  p o w d e r ,  q u a n t i t i e s  wi thou t  i t  r e f e r  to  the  con t inuous  
m a t e r i a l .  The  e x p r e s s i o n s  (1), (2), and (3), f o r  a known shock  a d i a b a t  of the  con t inuous  m a t e r i a l ,  make  i t  
p o s s i b l e  fo r  us  to c o n s t r u c t  the  shock  a d i a b a t  of a m a t e r i a l  of p o r o s i t y  k in (p, u) and  (p, o)  c o o r d i n a t e s  o v e r  
the  r a n g e  w h e r e  y fo r  a i r  s t a y s  cons t an t .  It was  shown in [2] t ha t  fo r  Pl < 0.56 k b a r ,  we m a y  t ake  Tt = 1.2 
and tha t  fo r  P2 > 150 k b a r ,  we m a y  t a k e  Y2 = 5/3- We a s s u m e  tha t  e v e r  the  i n t e r v e n i n g  r a n g e  in which  the p r e s -  
s u r e  goes  f r o m  Pl to  P2, the  f r a c t i o n  X of the  a i r  wi th  Yl = 1.2 d e c r e a s e s ,  i . e . ,  we  l e t  

~,= l - - p . / p ~  

We s h a l l  a s s u m e  tha t  Pl << P2, Then  

~v=l  forp = p l ,  k =  0 

A s  a r e s u l t  we  obta in :  fo r  the  s p e c i f i c  v o l u m e s  

foI p ~ P2 

(4) 

v * = v  + ( ~ -  l)Vo[;~ ( ~ / +  0 -- ~.) ( ~ )  ~] 

f o r  the  c o m p r e s s i o n s  

l t / ~ l  - -  1 \~ l f"(~ - -  t \~G 

~-~ = ~- + (~ - ~)I ~ t~-c-#-W + ( - ~)t~-c-m-~/J 
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TABLE 2 
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A cor respond ing  e x p r e s s i o n  can a lso  be obtained 
for the in tervening range  for  the mass  ve loc i ty .  

The unloading p r o c e s s  for  a s h o c k - c o m p r e s s e d  
porous  m a t e r i a l  may evident ly  be r e p r e s e n t e d  in the 
following way. The m a t e r i a l  in the g ra ins  of the con-  
t inuous substance  expands along the i sen t rope  f rom the 
co r respond ing  s ta te  p,O, r  It is l ike ly  that  in the a i r  
bubbles two compet ing p r o c e s s e s  coexis t :  cooling at  
the expense of heat  t r a n s f e r  and, co r respond ing  to th is ,  
a c o m p r e s s i o n  of the a i r ,  and an i sen t rop ic  expansion.  
F o r  the cooling,  the d e c r e a s e  in the volume can be taken 
p ropo r t i ona l  to the d e c r e a s e  in t e m p e r a t u r e  and to the 
r a t i o  of the p r e s s u r e s  

v, T~ p*~ 
V2* ~ T2 *o p 

F o r  an i s en t rop ic  expansion the i n c r e a s e  in volume amounts  to 

We p r e s e n t  some of the r e s u l t s  of our e x p e r i m e n t s  with porous  Ni, Cu, and W, over  a range  of p r e s -  
s u r e s  for  which e x p e r i m e n t a l  data  has  as  ye t  not been publ ished,  and we compare  them with ca lcu la ted  r e -  
su l t s .  

Specimens  of porous  nickel ,  copper ,  and tungsten were  p r e p a r e d  with values  of dens i ty  P0 in g m / c m  s 
and p o r o s i t y  as  shown in the p a r e n t h e s e s :  Ni (3.75, 2.75), Cu (2.97, 3.01), W (9.00, 2.15). 

The shock ad iaba t s  were  obta ined by the method of r e f l ec t ion  (see [2]) with the aid of four d i f ferent  
explos ive  in s t a l l a t ions ,  where in  a shock wave is gene ra t ed  in a s t andard  spec imen,  this  wave then being 
r e f r a c t e d  into the spec imen  under inves t iga t ion .  To avoid d i s to r t ion  of the shock wave by l a t e r a l  unloading 
the r a t i o  of the d i a m e t e r  of the spec imen  to i ts  height  was taken suff ic ient ly  l a rge ,  being v a r i e d  f rom 10 to 
20 f rom spec imen  to spec imen .  In each s e p a r a t e  expe r imen t  with a given spec imen,up  to eight  m e a s u r e -  
ments  of shock wave ve loc i ty  in the spec imen  were  obtained.  F r o m  2 to 4 expe r imen t s  for  each of the 
powders  were  c a r r i e d  out on each of the explos ive  ins ta l l a t ions .  

The deviat ion of the in i t i a l  dens i ty  of the spec imens  f rom nominal  did not exceed 1.5% in the e x p e r -  
iments .  N e v e r t h e l e s s ,  c o r r e c t i o n s  were  in t roduced into the e xpe r i m e n t a l  r e s u l t s  taking this  deviat ion of the 
densi ty  into account .  The maximum value of the c o r r e c t i o n  did not exceed  1%, and in the ma jo r i t y  of c a s e s  
amounted to s e v e r a l  tenths  of one pe rcen t .  
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Table 1 gives the value s of the measured  shock wave speeds D, with the cor rec t ions  a l ready taken 
into account; the second column indicates the standard mater ia l  and its wave speed U in k m / s e c .  By con- 
sidering the situation at the contact boundary between the standard mater ia l  and the porous specimen, where 
a decomposit ion takes place in the shock wave speeds, we obtained values of the p r e s s u r e  p, the mass  ve loc-  
ity u, and also the compress ion  r in the specimen. The quantities in parentheses  denote standard e r r o r  of 
the measurements .  The last  three columns for the mass  velocity, the p r e s su re ,  and the compress ion  display 
standard e r r o r s ,  which were calculated f rom formulas  result ing f rom the express ion for the var iance of a 
function of two var iables  which are  l inearly re la ted  (see [3]): 

1{ D 

r n = t +  Pos Cs+2~s(2U--u) 
p0* D* (5) 

Here n is the relat ive magnitude of the mean-square  e r r o r ,  the coefficient of variat ion [4]; the sub- 
scr ip t  on ~ indicates the physical  quantity to which i t  applies; P0 is the initial density; c and/3 are  the coef-  
ficients appearing in the D vs u dependence. 

The subscr ipt  s indicates that the quantity in question r e f e r s  to a state in the standard material ;  the 
a s t e r i sk  indicates re fe rence  to the porous specimen.  

In addition, experiments  were  ca r r i ed  out to follow the downward trend of the unloading curve of 
porous copper (k = 3.01) f rom the state p*~ = 485 kbar.  This involved placing, relat ive to the subsequent 
path of the shock wave, less  r igid  mater ia ls  back of the specimen of porous copper,  namely,  water  and p las -  
tic foams of three  different densities,  the lat ter  labeled PS for polystyrene;  the D vs u relat ions for these 
mater ia ls  were obtained by interpolating the experimental  data f rom [5]. An experimental  verif icat ion con- 
f i rmed the validity of this interpolation. A measurement  of the shock wave speed in these mater ia ls  made 
it possible,  knowing their  shock adiabats, to determine the p r e s s u r e  and mass velocity in the porous copper.  

In Table 2 we present  the experimental  resul ts  for the unloading of the porous copper (k = 3.01) f rom 
the state p*~ = 485 kbar,  o -*~ = 1.058, u *~ = 3.85 kin/see;  in addition, for a ir  we give the values of the free 
surface velocity.  

In Fig. 1, p r e s s u r e  p in kbar is plotted against  mass  velocity u in km/ sec ,  the resul ts  calculated f rom 
formula (3) being displayed by means of continuous curves;  in addition we have plotted the experimental  
shock adiabat data for Ni, Cu, and W. A s imilar  comparison is made on the p r e s s u r e - c o m p r e s s i o n  (relative 
density a) plot in Fig. 2. As these curves  show, the idea employed here for investigating the shock com-  
press ion  of porous metals by taking into account the air between the solid grains gives good agreement  with 
the experimental  resul ts  in the p vs u plane and somewhat poorer  in the p vs a plane. The latter can be 
explained by the large e r r o r  in the values of a, which a r i se  in the calculations (see [5]). The available ex-  
per imental  resu l t s  on the shock compress ion  of porous metals  [6-9] in the range of p r e s s u r e s  up to 1 Mbar 
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also confirm the ideas presented above. However, the resu l t s  given in [6-8] r e fe r ,  for the most  part ,  to 
the domain of p r e s s u r e s  exceeding 1 Mbar. Under these conditions it becomes necessa ry  to take into ac -  
count the thermal  radiat ion of the air .  The lat ter  apparently has the effect that at some p r e s s u r e  a mean 
compress ion  of the powder will be rea l ized,  which is less than that determined f rom formula  (2), due to 
vaporizat ion of a par t  of the metal f rom the surface of the grains .  A comparison of the resu l t s  given in 
[6-8] for large p r e s s u r e s  qualitatively conf i rms the validity of this assumption.  

The experimental  resu l t s  with r e spec t  to the unloading of previously  shock-compressed  porous copper 
can be described,  as in [8], in t e r m s  of p r e s s u r e  and mass  velocity by a formula of the form 

p = a ( W - -  u)-~- b ( W - -  u) 2 (6) 

where 

a = p0c0, b =  P0~ 

where P0, Co, and fl a re ,  respect ively ,  the density and the coefficients appearing in the D vs u relat ionship 
for the continuous metal; finally, W is the value of the mass  velocity at p = 0. The unloading curve in the 
p r e s s u r e  vs compress ion  var iables  may be represen ted  as follows: 

/ I po a ~ 4 b p *  ~ -1 

Here p*~ a *~ a re  the coordinates  of the point f rom which the unloading begins. The validity of fo r -  
mulas (6) and (7) was checked in the case of continuous copper, the unloading curve being calculated f rom 
formulas  (6) and (7) f rom the initial state p = 485 kbar,  a = 1.224, and u = 1.0 km/ sec ,  and these calculations 
were  then compared with the isentrope passing through this state, where the isentrope was calculated f rom 
a known equation of state with a constant Griineisen pa rame te r .  Complete agreement  was obtained between 
the curve based on Eq. (7) and the isentrope based on the known equation of state. 

The experimental  resu l t s  obtained for the unloading of porous copper f rom the state p*~ = 485 kbar,  
a *~ 1.058, and u *~ = 3.35 k m / s e c  are represen ted  by the points plotted in Fig. 3. The shock adiabat for 
porous copper is identified there  by the numera l  1. The continuous curve 2 in this figure is the m i r r o r  
image with r e spec t  to the p axis of the shock adiabat of continuous copper,  drawn through the point (p*~ u*~ 
With the aid of Eq. (7) the unloading curve was obtained in the pa plane (see the curve labeled 1 in Fig. 4). 
The curve labeled 2 in this figure corresponds  to the isentrope calculated f rom the equation of state with a 
constant  Griineisen pa ramete r .  

An analysis  of the resu l t s  shows that the unloading of the shock-compressed  porous copper is de te r -  
mined by an isentropic expansion of the grains  of the continuous metal.  A resu l t  of this same kind was ob- 
tained ear l ie r  in [8]. 

in par t icu lar ,  it follows f rom a compar ison of the unloading curve for porous copper (in Fig. 4, the 
curve 1 is based on Eq. (7) and the experimental  data) and the isentrope for the expansion a of the continuous 
copper that the volume occupied by the air  s tays prac t ica l ly  constant in the range of p r e s s u r e s  f rom 485 to 
~ 100 kbar,  being equal there  to the value it had at the initial unloading state p*~ a*~ Apparently,  the two 
concurrent  p roces ses ,  namely,  the isentropic expansion and the compress ion,  resul t ing f rom heat conduction, 
of the air  bubbles, compensate each other in their  effects.  As t ime passes ,  it is likely, as  far  as  the decrease  
in the p r e s s u r e  in the unloading wave is concerned,  that the expansion of the air  must dominate; this is ap-  
parent  in the deviation of the unloading curve of the porous metal  toward an increase  in the mass velocit ies 
(and a corresponding decrease  in the density). Lower points for the unloading of the copper into the plast ic 
foam, which has a density of P0 = 0.19 g m / c m  3, and into air  bears  witness to this deviation. 
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